Functional Monitoring in Stream and Wetland Restoration

June 2024

Proud sponsor & exhibitor Find us at booth #202

Introduction to Speakers

Agenda:

Introduction

- Performance Standards & Monitoring
- **EPA ORISE Proceedings on Dynamic Systems**
- OU Research on Robinson Fork

Contributors

- David Goerman, Water Program Specialist / Biologist
- Jeffrey Hartranft, Chief, Environmental and Geological Services Section

- Dr. Natalie Kruse Daniels
- Jen Bowman
- Nora Sullivan
- Dr. Kelly Johnson
- Nicole Kirchner

- Shawyn Yeamans, Project Manager
- Katie Wolff, Regulatory Director
- Mike Sachs, General Manager

Who is RES?

RES is restoring a resilient earth for a modern world, project by project.

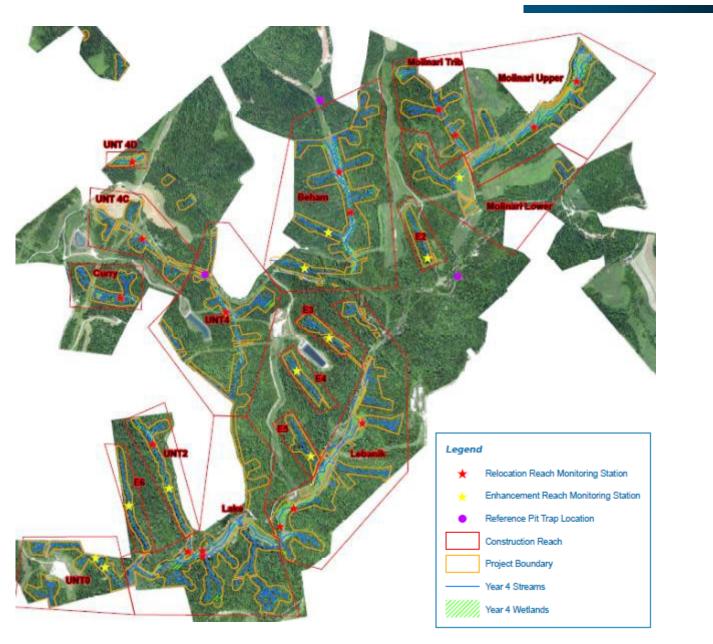
- Founded in 2007, inspired by notion that restoration can be a win/win for both humanity and the environment
- Nation's largest ecological restoration company, creating ecological uplift by doubling down on nature's own processes
- Pioneered how to make environmental mitigation markets work with a turnkey, totalstewardship business model
- Innovative ecological problem solvers dedicated to being long-term stewards of the earth

The ecological uplift of a mitigation project helps offset unavoidable impacts of infrastructure projects like highway expansions.

Performance Standards & Monitoring

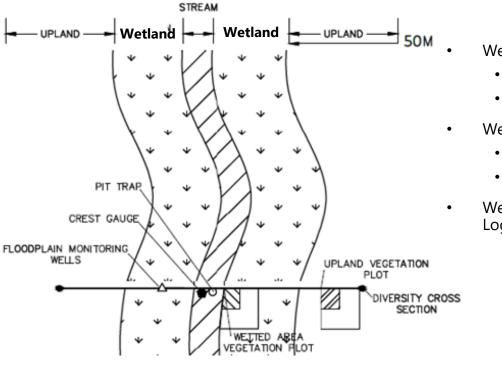
Agenda:

- Introduction
- Performance Standards & Monitoring
- EPA ORISE Proceedings on Dynamic Systems
- OU Research on Robinson Fork


Goals

Compensatory Mitigation & Ecological Uplift

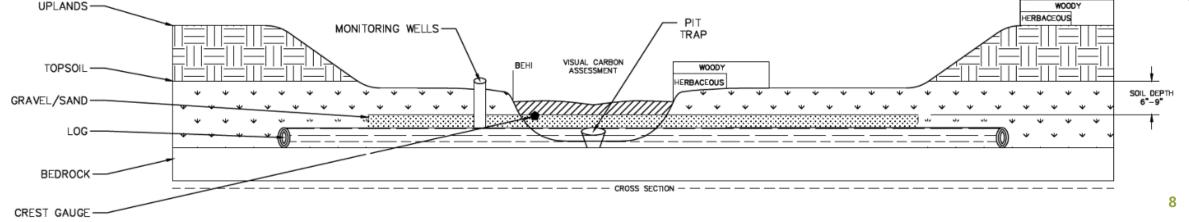
- Restore and preserve self-sustaining, functional streams, wetlands, and riparian corridors
- Replace the functions and values lost from adverse impacts
- Restoration of an integrated and dynamic stream and floodplain system
 - Restored localized groundwater aquifers and reconnected floodplains to the water table and streams
 - Diversified habitat while also creating a hydrologic system that allowed for the retention of nutrients, stream bed material, and organic carbon.


Tabl	e 2: Credit Release Summary	
Project Phase	Stream Credit Release Requested	Wetland Credit Release Request
Administrative Release (R1)	11,668.94	7.33
Administrative Modification based on Final Design (R2)	2,547.15	(1.73)
1 st As-Built Release (R2)	5,768.47	2.00
2 nd As-Built and Monitoring Release (R3)	14,753.09	6.86
3 rd As-Built and Monitoring Release (R4)	35,082.75	12.94
4 th Monitoring Release (R5)	15,476.12	6.24
5 th Monitoring Release (R6)	9,213.67	9.54
Current Total Releases	94,510.19	43.18
Remaining Releases	0.00	1.18
Current Requests (R7)	Not Applicable	1.18

Monitoring Layout

- 17 Unique Construction Reaches
- 17 Restoration (Relocation/Rehabilitation) Reach Monitoring Stations
- 11 Enhancement (Geomorphic/Habitat) Reach Monitoring Stations

Monitoring Station Design



Wetland or Uplands

- Wetland/Upland Herbaceous Plot 3' x 3'
 - Species and Cover
 - Photos (C)
- Wetland/Upland Woody Plots -20' Radius
 - Species, Cover, Heights, Condition
 - Photos (N, S, E, W)
- Wetland Monitoring Wells (Water Level Logger)

<u>Streams</u>

- Stream Gauge (Water Level Logger)
- BEHI Evaluation
- Pebble Counts and Pit Traps
 - Habitat (Wolman 100 Meter Reach 100 Pebbles)
 - Stability (Riffle Transect 100 Pebbles)
- LWD Volumes 100 Meter Reach
 - >1.5 m x 10 cm
- Water Quality Samples
 - pH, Temp, DO, Turbidity, Specific Conductance
- Long Pro Survey 100 Meter Reach
- Fish and Macroinvertebrate Surveys 100 Meter Reach
- % Carbon/Sediment Retention and Instream Habitat Types

Performance Standards

		Table	7: Performance Standards and Goals Summary		
Resource			Performance S	Standard Value	
Туре	Functional Subgroup	Evaluation	Phase 1	Phase 2 If Different	Phase 3 If Different
	Vertical Bed Stability	Vertical Deviation	<0.5'	Same	Same
	Channel Pattern	Sinuosity	Within design range	Same	Same
Stream System	Channel / Floodplain Stability	ВЕНІ	≤Low	Same	Same
	Channel / Floodplain Connectivity	Stream Hydrology	Bankfull ≥4/yr	Same	Same
	Epifaunal substrate	Bed Mobility	≥50% pit trap reduction and/or improvement from reference	Same	Same
ио	Carbon / Sediment	Visual Retention Observation	≥ 60% carbon and/or sediment retention	Same	Same
Retention	Habitat Diversity	LWD Volume	25% 个 LWD habitat and/or substrate diversity	Same	Same
ř.	Biological	Pebble Count Diversity Fish	N/A	个 species richness or 10% 个 biomass, or #; and/or	Same
	-	Macros	N/A	10% 个 IBI score	Same
C		Invasive Vegetative Cover	≤15%	≤10%	≤5%
odplair	Riparian Wetland	Native Vegetative Cover	≥30%	≥50%	≥70%
/ Floo		Woody Vegetative Cover	N/A	≥15%	≥30%
Stream / Floodplain	Root Saturation	Groundwater Hydrology	12 consecutive days or 12% of growing season upper 1' soil saturation	Same	Same
S	Stream Channel / Floodplair Diversity	າ Cross Section Diversity	↑ habitat diversity & depth/velocity regimes	Same	Same
Upland	Habitat	Invasive Vegetative Cover	≤15%	≤10%	≤5%

Results from Baseline

				Comparat	ole Data Revie	w - BEHI				
		-		2017		2018		2019		2020
Reach	Cross-section	Baseline Value		Improvement?	Value	Improvement?	Value	Improvement?	Value	Improvement?
4D	1	Extreme	Low	Yes	Low	Yes			Low	Yes
Machiller	1	High	Low	Yes	Low	Yes			Low	Yes
McCulley	2	High	Low	Yes	Low	Yes			Very Low	Yes
Linnen Melineri	1	High	Low	Yes	Low	Yes	Not	Sampled	Low	Yes
Upper Molinari	2	High	Low	Yes	Low	Yes			Low	Yes
Molinari Trib	1	Very High	Low	Yes	Low	Yes	Low Ye		Yes	
Wollnari Trib	2	High	Low	Yes	Low	Yes			Very Low	Yes
	1	High			Low	Yes	Very Low	Yes	Low	Yes
Lebanik	2	Moderate		[Low	Yes	Low	Yes	Very Low	Yes
	3	Moderate			Low	Yes	Low	Yes	Low	Yes
Lake Reach	1	High			Very Low	Yes	Low	Yes	Low	Yes
Lake Reach	2	Very High			Low	Yes	Low	Yes	Low	Yes
Beham	1	Very High	Not	Sampled	Low	Yes	Low	Yes	Low	Yes
Denam	2	Moderate			Low	Yes	Low	Yes	Very Low	Yes
UNT2	1	Extreme			Low	Yes	Low	Yes	Low	Yes
Curry	1	High			Low	Yes	Low	Yes	Very Low	Yes
UNT4	1	High			Low	Yes	Low	Yes	Low	Yes
UNT4C	1	Extreme			Low	Yes	Low	Yes	Very Low	Yes
				Comparable Da	ata Review –	LWD (m³/m²)				
				2017		2018		2019		2020
Reach	Cross-section	Baseline Value	Value	Improvement	t? Value	Improvement?	Value	Improvement?	Value	Improvement?
4D	1	0	0.0032	Yes	0.0032	Yes			0.0032	Yes
	1	0.0025	0.0147	Yes	0.0147	Yes			0.0147	Yes
McCulley	2	0.0007	0.0337	Yes	0.0337	Yes			0.0337	Yes
	1	0.0066	0.0011	-	0.0084		-			
Upper Molinari	2					Yes	NO.	ot Sampled	Not Sampled 0.0084 Yes	
		0.0066	0.0074	Yes	0.0080	Yes Yes	No	ot Sampled	0.0084	Yes Yes
	1	0.0066	0.0074	Yes Yes			No	ot Sampled		
Molinari Trib	_			_	0.0080	Yes	No	ot Sampled	0.0080	Yes
Molinari Trib	1 2	0.0009	0.0157	Yes	0.0080 0.0157 0.0016	Yes Yes Yes			0.0080 0.0158 0.0016	Yes Yes Yes
Molinari Trib Lebanik	1	0.0009	0.0157	Yes	0.0080	Yes Yes	0.0249	Yes Yes	0.0080 0.0158	Yes Yes
	1 2 1 2	0.0009 0 0.0002 0.0012	0.0157	Yes	0.0080 0.0157 0.0016 0.0249 0.0049	Yes Yes Yes Yes Yes	0.0249	Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049	Yes Yes Yes Yes Yes
Lebanik	1 2 1	0.0009 0 0.0002	0.0157	Yes	0.0080 0.0157 0.0016 0.0249	Yes Yes Yes Yes	0.0249	Yes	0.0080 0.0158 0.0016 0.0249	Yes Yes Yes Yes
	1 2 1 2 3	0.0009 0 0.0002 0.0012 0.0012	0.0157	Yes	0.0080 0.0157 0.0016 0.0249 0.0049 0.0062	Yes Yes Yes Yes Yes Yes	0.0249 0.0049 0.0062	Yes Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049 0.0062	Yes Yes Yes Yes Yes Yes
Lebanik Lake Reach	1 2 1 2 3 1	0.0009 0 0.0002 0.0012 0.0012 0.0001	0.0157	Yes	0.0080 0.0157 0.0016 0.0249 0.0049 0.0062 0.0097	Yes Yes Yes Yes Yes Yes Yes	0.0249 0.0049 0.0062 0.0103	Yes Yes Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049 0.0062 0.0103	Yes Yes Yes Yes Yes Yes Yes
Lebanik	1 2 1 2 3 1 2 2	0.0009 0 0.0002 0.0012 0.0012 0.0001 0.0001	0.0157	Yes Yes	0.0080 0.0157 0.0016 0.0249 0.0049 0.0062 0.0097 0.0144	Yes Yes Yes Yes Yes Yes Yes Yes	0.0249 0.0049 0.0062 0.0103 0.0144	Yes Yes Yes Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049 0.0062 0.0103 0.0145	Yes Yes Yes Yes Yes Yes Yes Yes
Lebanik Lake Reach Beham	1 2 1 2 3 1 2 1 2 1 2	0.0009 0 0.0002 0.0012 0.0012 0.0001 0.0001 0.0002 0.0003	0.0157	Yes Yes	0.0080 0.0157 0.0016 0.0249 0.0049 0.0049 0.0062 0.0097 0.0144 0.0107 0.0048	Yes Yes Yes Yes Yes Yes Yes Yes Yes	0.0249 0.0049 0.0062 0.0103 0.0144 0.0111 0.0048	Yes Yes Yes Yes Yes Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049 0.0062 0.0103 0.0145 0.0111 0.0048	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Lebanik Lake Reach Beham UNT2	1 2 1 2 3 1 2 1 2 1	0.0009 0 0.0002 0.0012 0.0012 0.0001 0.0001 0.0001 0.0002	0.0157	Yes Yes	0.0080 0.0157 0.0016 0.0249 0.0049 0.0062 0.0097 0.0144 0.0107 0.0048 0.0317	Yes Yes Yes Yes Yes Yes Yes Yes Yes	0.0249 0.0049 0.0062 0.0103 0.0144 0.0111	Yes Yes Yes Yes Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049 0.0062 0.0103 0.0145 0.0111 0.0048 0.0358	Yes Yes Yes Yes Yes Yes Yes Yes Yes
Lebanik Lake Reach Beham	1 2 1 2 3 1 2 1 2 1 2 1	0.0009 0 0.0002 0.0012 0.0012 0.0001 0.0001 0.0001 0.0002 0.0003 0.0011	0.0157	Yes Yes	0.0080 0.0157 0.0016 0.0249 0.0049 0.0049 0.0062 0.0097 0.0144 0.0107 0.0048	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	0.0249 0.0049 0.0062 0.0103 0.0144 0.0111 0.0048 0.0358	Yes Yes Yes Yes Yes Yes Yes Yes	0.0080 0.0158 0.0016 0.0249 0.0049 0.0062 0.0103 0.0145 0.0111 0.0048	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Results from Baseline

			Com	parable Data Revie	w – Macı	oinvertebrate IBI				
Reach	Cross-section	Baseline Value		2017		2018		2019		2020
Neach	cross-section	baseline value	Value	Improvement?	Value	Improvement?	Value	Improvement?	Value	Improvement?
4D	1	35.10			47.53	Yes	No	ot Sampled	49.54	Yes
McCulley	1	49.92			37.08	-	49.58	-	67.46	Yes
wiccuney	2	40.77	1		42.76	Yes	60.10	Yes	73.59	Yes
Upper Molinari	1	47.52]		65.16	Yes			55.29	Yes
opper Molinari	2	47.52	1		52.38	Yes		at Complete	62.53	Yes
Molinari Trib	1	48.32]	F		Yes		ot Sampled	68.25	Yes
Molinari Trib	2	35.19	1		70.73	Yes			65.61	Yes
	1	37.08]				56.82	Yes	56.73	Yes
Lebanik	2	42.83		at Complete			42.97	Yes	47.08	Yes
	3	42.83		ot Sampled			45.56	Yes	48.18	Yes
Lake Reach	1	42.41]				39.07	-	50.77	Yes
Lake Reach	2	33.65	1				46.57	Yes	71.70	Yes
Baham	1	62.67]		N	ot Sampled	47.91	-	62.69	Yes
Beham	2	54.48					57.37	Yes	66.89	Yes
UNT2	1	53.16					47.72	-	67.38	Yes
Curry	1	31.63	1				51.99	Yes	66.37	Yes
UNT4	1	50.53]				51.18	Yes	65.10	Yes
UNT4C	1	35.1					66.71	Yes	49.64	Yes

					Compa	arable Data Review	- Fish			
Reach	Cross-section	Baseline Value		2017	201	8	2019		2020	
Reach	cross-section	baseline value	Value	Improvement?	Value	Improvement?	Value	Improvement?	Value	Improvement?
4D	1	None			None	-			None	-
McCulley	1	None			None	-			None	-
wicculley	2	None]		None	-			None	-
Linner Melineri	1	Fish Present]		Richness Increase	Yes	Not Sampled		Richness Increase	Yes
Upper Molinari	2	Fish Present]		No Change	-			Richness Increase	
Molinari Trib	1	None]		Range Expansion	Yes		None		-
Wollhari Trib	2	None]		Range Expansion	Yes			Range Expansion	Yes
	1	None]				None	-	None	-
Lebanik	2	Fish Present		at Complet			No Change	-	No Change	-
	3	Fish Present]	ot Sampled			No Change	-	No Change	-
Lake Reach	1	Fish Present]				Range Expansion/Biomass Increase	Yes	Range Expansion	Yes
Lake Neach	2	None]				Range Expansion	Yes	Range Expansion	Yes
Beham	1	Fish Present]		Not San	npled	Richness Increase	Yes	Species Quality Increase	Yes
benam	2	Fish Present]				Richness/Biomass Increase	Yes	Richness Increase	Yes
UNT2	1	None]				Range Expansion	Yes	Range Expansion	Yes
Curry	1	None]				None	-	None	-
UNT4	1	Fish Present	1				Biomass Increase	Yes	Biomass Increase	Yes
UNT4C	1	None	1				None	-	None	-

Outcome for Commercial Mitigation Banking

Compensatory Mitigation & Ecological Uplift

RES' Quaker Mitigation Bank, near Allentown, PA

Reestablishing base level control for the riverine and wetlands systems to exist on by undoing the historic and modern alterations.

Lower long-term costs (lower or no long-term maintenance or repairs)

Higher quality vegetation (low invasives) due to hydrology and conditions favorable for reestablishing native communities

Design for climate resilience where these conditions survived thousands of years of climatic variability and maintained their form, representing the best chance for surviving future changes in rainfall intensity.

EPA Publication on Dynamic Systems

Agenda:

- Introduction
- Performance Standards & Monitoring
- **EPA ORISE Proceedings on Dynamic Systems**
- OU Research on Robinson Fork

References 2023 NSRC Workshop

https://restorestreams.or
 g/2023-agenda

Mid-Atlantic Wetlands Workgroup 2023 Annual Meeting

 https://www.nawm.org/m awwg-2023-annualmeeting.html

Expanding Monitoring and Performance to Dynamic Alluvial Valleys

Sam Leberg

Oak Ridge Institute for Science and Education Fellow at the EPA

Contact Information

- Sam Leberg: Leberg.Samuel@epa.gov
- Brian Topping: Topping.Brian@epa.gov

Expanding Monitoring and Performance to Dynamic Alluvial Valleys

Metric Organization

Key Process	Stream Function Pyramid Level	SFAM Key Functions	Parameter	Indicator	Citation
Connectivity	Hydraulies	Surface water storage, sub/surface transfer, flow variation, sustain trophic structure, nutrient cycling, chemical regulation, thermal regulation	Groundwater and Surface Water Exchange	Monitoring wells ▲⊞	Robinson Fork Mitigation Bank, Quaker Mitigation Bank
Extensive Lateral and Vertical Connectivity	Geomorphology	Surface water storage, flow variation, sediment continuity, create and maintain habitat	Lateral Migration	Bank Erodibility Hazard Index (BEHI)	Upper Susquehanna River Mitigation Bank-Phase 2, Codorus Creek Stream & Wetland Bank
Extensive	Physicochemical	Surface water storage, sub/surface transfer, flow variation, thermal regulation,	Temperature	Surface or mean water temperature through water column- DM, MWAT, monthly average (summer or winter) III	Great Pee Dee Mitigation Bank, Upper Susquehanna River Mitigation Bank-Phase 2, Pollock et al. 2003

Performance Metrics

Key Process	Parameter	Indicator	Target	Timing	Notes & Considerations
Extensive Lateral and Vertical Connectivity	Floodplain Connectivity	Flooding/Inundation frequency, duration, and/or aerial extent; stream gage, ground water wells, water presence sensors, other continuous monitoring	Floodplain inundation events or duration in a normal flow year	Monitored in all years	Indicative of a large flood-prone area frequently laterally connected. Specifics will vary by region. As used by practitioners in Pennsylvania, 4 times per year in a normal year, coupled with visual evidence of floodplain inundation in spring season.
Creation and Maintenance of Diverse Habitats	Depth Diversity	Coefficient of Variation of Depth 団	Increase compared to pre-project conditions; Meeting or exceeding reference conditions		Depth diversity indicates in-channel habitat and variable zones for temperature and sediment deposition. A matrix of stream depth can be created with aerial and multispectral imagery. Different depths can then be classified, and variation quantified. Restored DAVs should result in a high diversity of depths though specific numerical targets would be regionally-dependent.
Ma					argets would be regionally-dependent.
Key Process	Parameter	Indicator	Target	Timing	Notes & Considerations
	Parameter Carbon Retention	Indicator Visual, photo station or otherwise	Target 60% of monitoring stations, pieces of LWD retaining CPOM	Monitored in	Notes & Considerations This metric target would demonstrate that a site can retain carbon but would not

Ohio University Research on Robinson Fork

Agenda:

- Introduction
- Performance Standards & Monitoring
- EPA ORISE Proceedings on Dynamic Systems
- OU Research on Robinson Fork

Floodplain Reconnection Stream Restoration Increases Water and Nutrient Retention

Presenter: Dr. Natalie Kruse Daniels

Annika Gurrola, Tatiana Burkett, Red Pazol, Nora Sullivan, Jen Bowman, Kelly Johnson, Morgan Vis

Ohio University

Floodplain Reconnection and Restoration

- Purpose
 - To reestablish connections between the stream channel, groundwater, and floodplain
- Why we're using it
 - Manage stream loss from longwall mining
 - Mitigation for mining & oil and gas
 - Increased water storage
 - Increased nutrient storage
 - Increased resilience to flooding
 - Reduced erosion
 - We know that the riverine and wetlands systems functioned and looked like this from in-situ buried evidence which provides information about how these resources existed for thousands of years before colonial and modern impacts severely altered them.

Cooper, Hiscock, & Lovett, 2019

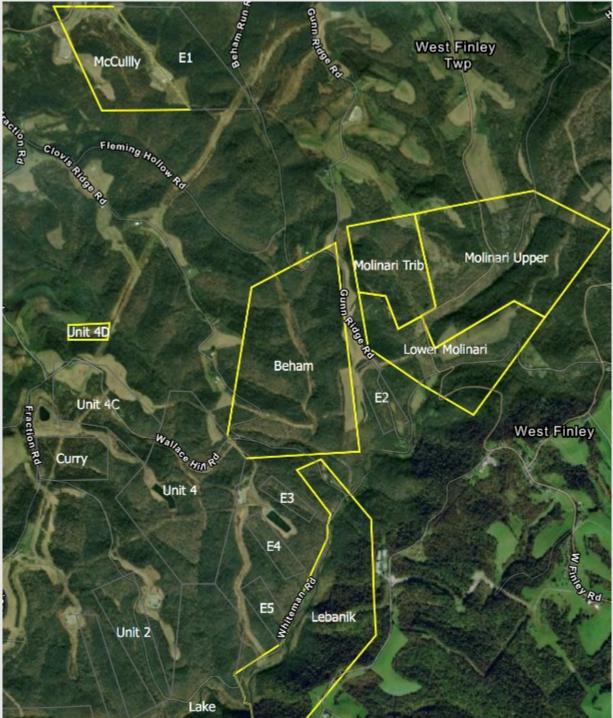
Erosion

High water velocity post rainfall

Increased water storage

Reduced sediment flux into channel

Less SW nutrient export DS


Less sediment export DS

Objectives

Characterize impact of the floodplain reconnection method in longwall mined watersheds by comparing the following characteristics of restored and unrestored sites

- Water storage
- Sediment retention and export
- N and P retention and export in the sediment and surface water
- Carbon accumulation and retention

Study Sites

Primary headwaters

Headwaters

Wadeable

Results

Rainfall, Flow, Water Storage

Nutrients in Water, Pore Water, and Sediment

Carbon Input and Storage

Conclusions

Water storage

Slightly increased in restored sites

Sediment

- Higher proportion of fine-grained sediment at restored sites
- DS TSS load was driven by flow

Nutrients

- Sediment: Richer in N and P in restored sites
- Surface water N&P seasonal or flow dependent
- P storage in wetlands (pore water)

Conclusions

Total organic carbon

 Dependent upon season (greater in the growing season), not restoration status

Carbon Input

 Not significantly different between restoration status

Soil organic matter

 Greater in restored sites than unrestored

Thank you

Mike Sachs General Manager, Northeast <u>msachs@res.us</u>

Øres

Proud sponsor & exhibitor Find us at booth #202

