Performance Monitoring Development for Impoundment Removal Projects

Bree Stephens

June 2024

Proud sponsor & exhibitor Find us at booth #202

Outline

- Impoundment Removal Projects in Virginia
- Virginia CWA 404 Mitigation Overview
- Virginia CWA 404 Mitigation Template Performance Standards
- Expanding Monitoring and Performance Standards to Dynamic Stream Systems
- Proposed Performance Monitoring for Dynamic Alluvial Valleys/Impoundment Removals
- Adaptive Management
- Questions/Discussion

Impoundment Removal Projects in Virginia

- Two Clean Water Act (CWA) 404 mitigation projects in Virginia:
 - One Permittee Responsible Mitigation (PRM) Preparing to go to construction
 - One through The Nature Conservancy Virginia Aquatic Resources Trust Fund (VARTF) – Waiting on comments on the concept site development plan
- Both are small headwater systems in the Coastal Plain of Virginia with earthen dams.
- Design plan for both projects is to remove the earthen dams, grade a pilot channel through the dam footprint, and allow the channels to reestablish through natural hydraulic and geomorphic processes within the old pond bottom.

Virginia CWA 404 Mitigation

ca US Unifie Meth

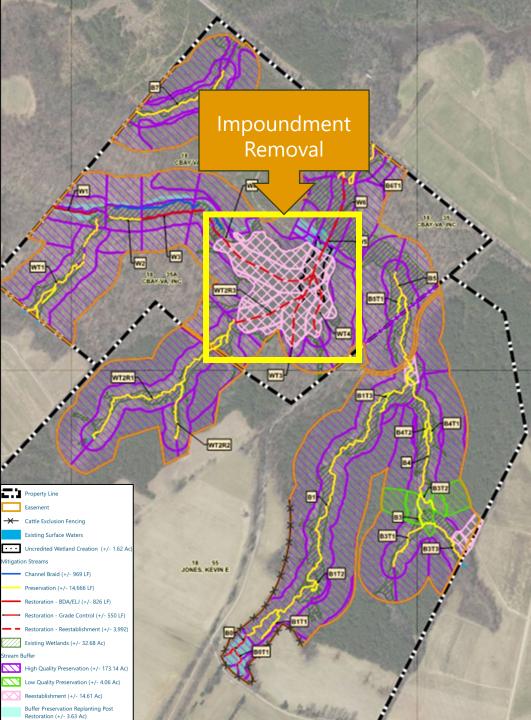
	1	1. Channel Condition: Assess the cross-section of the stream and prevailing condition (erosion, aggradation)						
	- i	Conditional Category						
nnacts	- F		Optimal	Suboptimal	Marginal	Poor	Severe	
npacts lculated sing the ed Stream		Channel Condition	Very little incision or active erosion; 80-100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OB Stable point bar/bank/libenches are present. Access to their original filocdplain or fully developed wide bank/ull benches. Mid-channel bars, and transverse bars few. Transient sediment deposition covers less than 10% of bottom.	Dignity incised, rew areas or active erosion or unprotected banks. Majority of banks are stable (60- 80%). Vegetative protection or natural rock prominent (60-60%). AND/OR Depositional features contribute to stability. The bankfull and low flow channels are vell defined. Stream likely has access to bankfull benches, or newly developed floodplains along portions of the reach. Transient sediment covers 10-40% of the stream bottom.	Often incised, but less than Severe or Poor Banks more stabile than Severe or Poor due to lover banks slopes. Erosion may be present on 0+050: of both banks. Vegetative protection on 40-000: of banks. Streambanks may be evertical or undercut. ANDICR 40+050: of stream is overed by sediment. Sediment may be temporaryitranisent, contribute instability. Deposition that contribute ostability. may be forming/present.	Dvervidened/Incised. Vertical/Waterally unstable Likely to viden further. Majority of both banks are near vertical. Erosion present on 00-80% of banks. Vegetative protection present on 20-40% of banks, and is insufficient to prevent erosion. AND/CR 800-80% of the stream is overed by sediment. Sediment is temporary/transient in nature, and contributing to instability. AND/CR V-shaped channels have vegetative protection is present on > 40% of the banks and stable sediment deposition is	Deeply incised for excavated), vertical/lateral instability. Severe incision, flow contained within the banks. Streambed below average rooting depth, majority of banks vertical/undercut. Vegetative protection present on less than 20% of banks, is not preventing erosion. Obvious banks sloughing present. Erosion/raw banks on 80-100%. AND/OR Aggrading shannel. Greater than 80% of stream bed is severe than 80% of stream bed is	
hodology USM)								
		Score	3	2.4	2	1.6	1	

Determine mitigation category for streams and buffers

Credits

calculated

based on


mitigation type,

stream LF, and

buffer Ac

Mitigation Categories			
Streams	Buffers		
Restoration	Reestablishment		
Enhancement	Heavy Planting		
High Quality Preservation	Light Planting		
Low Quality Preservation	High Quality Preservation		
	Low Quality Preservation		

(Stream LF x Mitigation type ratio) + (Buffer Ac x Mitigation type ratio) = Credit Yield

VA 404 Template Performance Standards

Forested Buffer Vegetation	Floodplain Connectivity	Lateral Stability/Bank Migration	Vertical Stability/Bed Form Diversity	Structure Stability	Aquatic Habitat
Choose 2	Choose 1	Choose 4	Choose 2	Required	Required for Perennial Streams
Woody stems per acre (plots)	Bank Height Ratio	Bank Erosion Hazard Index (at cross sections)	Pool-to-pool spacing	Structure Assessment	Habitat Assessment
Tree Height (% increase)	Entrenchment Ratio	Width/Depth Ratio	Max Pool Depth Ratio		
Tree Height (5 foot min by Year 5)		Cross-sectional Area	Average Riffle Slope		
Stem Area at Groundline		Meander Width ratio	Average Bankfull Slope		
		Sinuosity	Pebble Count (D50)		
		Radius of Curvature/Bankfull Width Ratio			
		Number of Livestakes and Woody Stems			
		Native Herbaceous Cover			
		Bare Ground Coverage			

* Bold are required

MBI Template Performance Standards

- Stability Based, compared to As-built
- Focused on single thread channels
- Based on NCD design parameters

Limitations for Impoundment Removal Projects

- Does not allow for dynamic channel reestablishment
- Not structured for multi-thread or braided systems
- Does not highlight the ecological uplift provided by impoundment removal

Enter the "Expanding Monitoring and Performance Standards to Dynamic Stream Systems"!

- Defines Dynamic Alluvial Valleys and provides recommendations for alternative performance standards and monitoring to show uplift
- Dynamic Alluvial Valleys (DAV)
 - Retentive systems that maximize ecological uplift
 - Single and multi-channel systems
 - Mix of floodplain /riparian habitats
 - Changes over time seasonal/annual
 - Changes over space expand/contract
 - Change due biological agent beaver
- This definition applies to most stream systems in the Coastal Plain of Virginia

EXPANDING MONITORING AND PERFORMANCE TO DYNAMIC STREAM SYSTEMS

Pre-Conference Workshop at the National Stream Restoration Conference Baltimore, MD August 21, 2023

Lead Instructor – Organizer Samuel Leberg (ORISE Fellow at the EPA, Leberg.Samuel@epa.gov)

Presenters

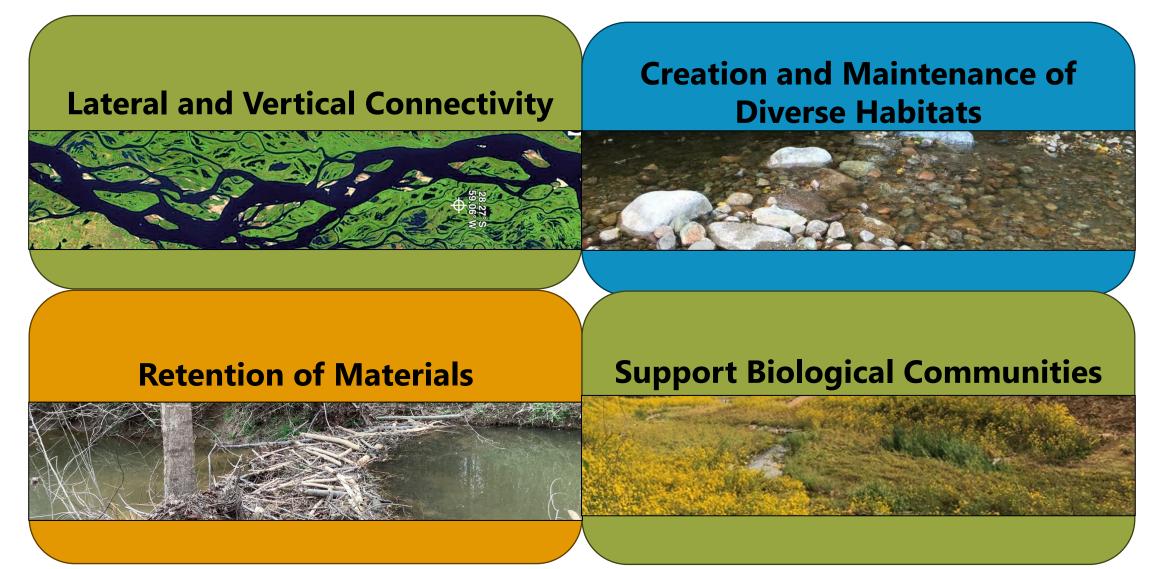
Matthew Hubbard - Ecotone, Inc. Caroline Nash-CK Blueshift, LLC Art Parola-University of Eastern Kentucky Bob Siegfried- Resource Environmental Solutions Brian Topping-US EPA

Panelists

Will Harman-Stream Mechanics Nick Ozburn - USACE, Baltimore District Ellen Wohl- Colorado State University Jason York – Michael Baker International

Performance Monitoring for Dynamic Alluvial Valleys

Allow for Flexibility in Stream Formation and Function – Set performance standards and monitoring to reflect a dynamic stream system that evolves over time toward an ecologically health condition



Holistic Monitoring – Focus on providing big picture, more transparent approach to monitoring, move away from point focused data collection

Track Failure Modes– Based on holistic monitoring, provide detailed data for problem areas if they arise, focus resources where there are concerns

DAV Key Processes as Performance Standards

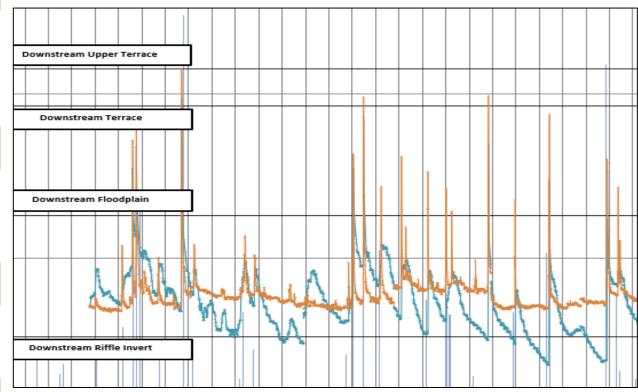
Floodplain Connectivity

Lateral and Vertical Connectivity

Monitoring – On the ground

- Stream gage measuring flood events direct measurement
- Photos of flood evidence indirect

Timeline


• Starting in Year 2 for impoundment removal projects, each monitoring year

Failure Mode

• Flows do not exceed top of bank at least once per year

Reporting

• Graphs, # floods per year, photos

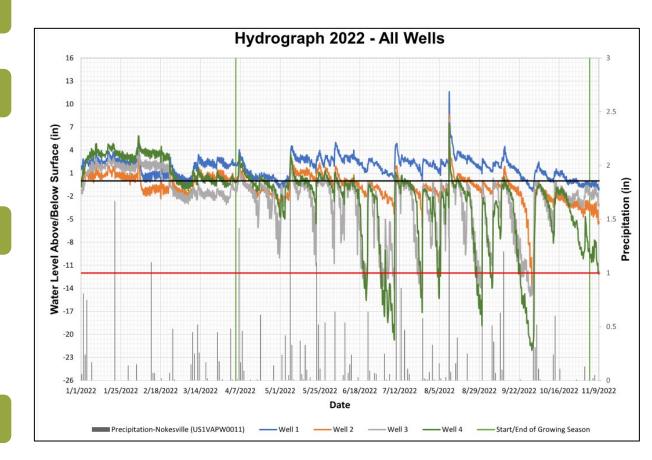
Groundwater and Surface Water Exchange

Lateral and Vertical Connectivity

Monitoring – On the ground

• Groundwater Wells in floodplain

Timeline


• Starting in Year 2 for impoundment removal projects, each monitoring year

Failure Mode

• Groundwater is not within 18 inches of surface elevation within floodplain for more than 30 days in the growing season in years of average or wetter rainfall

Reporting

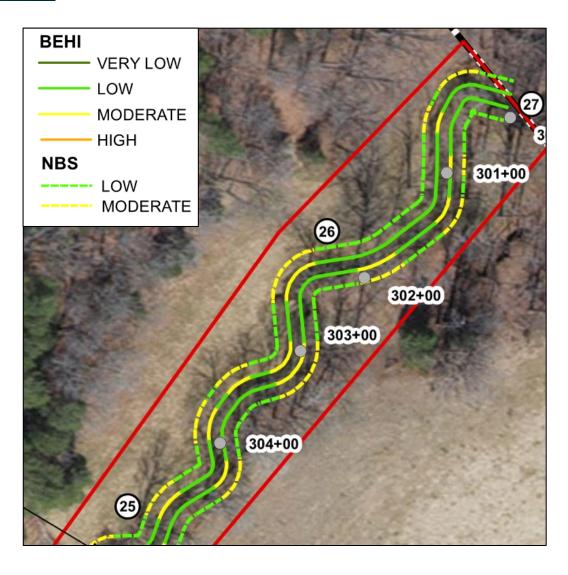
• Graphs and associated tables

Lateral Migration

Monitoring – On the ground

• Conduct BEHI/NBS on entire reach

Timeline


• Years 3, 5 and 10

Failure Mode

- Year 3: 50% of each reach has a BEHI/NBS of "high/high" or worse
- Year 5 and 10: BEHI/NBS average is "moderate/high" or worse

Reporting

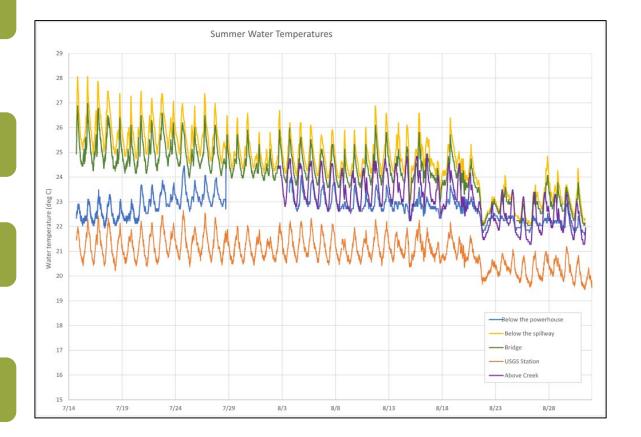
 Map of BEHI/NBS results on growing season aerial

Temperature Lateral and Vertical Connectivity

Monitoring – On the ground

• Temperature loggers set pre-construction, reset post-construction

Timeline


• Starting Year 2, each monitoring year

Failure Mode

• Surface water temperatures are above preproject values

Reporting

• Graph comparing pre- and year to year

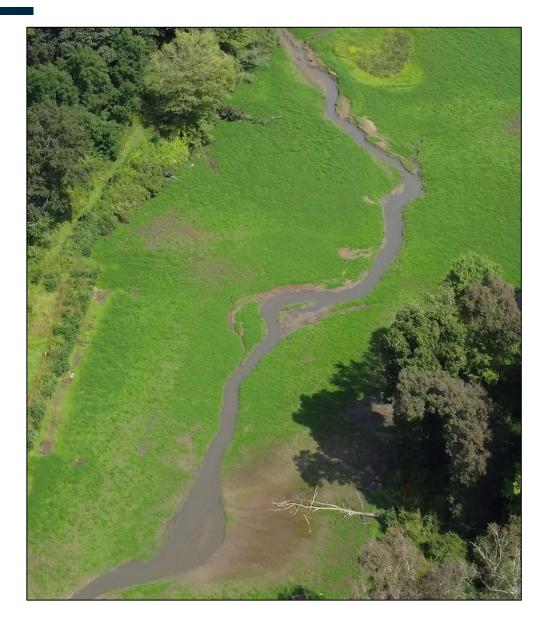
Stream Channel Formation

Creation and Maintenance of Diverse Habitats

Monitoring – Aerial photos

• Aerial photos taken quarterly in first year, winter aerial photos each monitoring year

Timeline


• Starting Year 1, each monitoring year

Failure Mode

• Identifiable channels do not develop

Reporting

• Aerial with top of bank lines drawn and year to year comparisons

Aquatic Habitat Diversity

Creation and Maintenance of Diverse Habitats

Monitoring – On the ground

 Coastal Habitat Assessment (HA) per Mid-Atlantic Coastal Streams Workgroup

Timeline

• Starting at Year 1, each monitoring year

Failure Mode

• The total score of the HA for each reach does not show improvement in narrative class initially from pre-project condition and scores fair or worse at Year 5.

Reporting

 Compare HA scores from pre- and year to year

		Excellent	Good	Fair	Poor
1.	Channel Modification	natural channel, bends frequent, good diversity of runs and bends	natural channel, long runs, bends infrequent	modified channel with bends, OR stream meanders within straight channel	modified channel with no bends
		20-16	15-11	10-6	5-0
	Instream Habitat snags vegetated banks undercut banks macrophytes riffles	3-4 types present > 50 % coverage 20-16	3-4 types present < 50 % coverage 15-11	1-2 types present > 50 % coverage	1-2 types present < 50 % coverage 5-
3.	Pools abundant: >5 /100m shallow: >1 ft deep: 2-3 ft	deep and shallow pools present and pools are abundant	deep and shallow pools present and pools are rare, OR stream is uniformly deep	all pools shallow and pools are abundant	all pools are shallow and rare, or pools are absent
(<pre>> prevailing depth) Bank Stability</pre>	20-16 very stable, no evidence of erosion or bank failure	15-11 moderately stable, areas of erosion healed over	10-6 moderately unstable, 5-10% of the bank shows signs of active erosion	5-1 very unstable, many eroded areas along both runs and bends; > 10% of the bank shows signs of erosio
	(⇒ while facing downstream)	left 10-9 right 10-9	8-6 8-6	5-3 5-3	2- 2-
5.	Bank Vegetative Type	dominant vegetation is shrubs	dominant vegetation is trees	dominant vegetation is grass and herbaceous plants (briars)	stream bank dominated by non- vegetation (rock, soil, bulkhead, etc.)
	(⇒ while facing downstream)	left 10-9 right 10-9	8-6 8-6	5-3 5-3	2- 2-
6.	Shading sun overhead full leaf-out	25-90% of the water surface shaded; a mixture of conditions; areas fully shaded, fully open, and degrees of filtered light	> 90% of water surface shaded, full canopy; entire water surface receives filtered or no light	no scoring in this category	< 25% of water surface shaded; lack of a canopy; full sunlight reaches water surface
		20-16	15-11	10-6	5-
7.	Riparian Zone Width	no evidence of human activity within 18 meters (60 feet)	no evidence of human activity within 12 meters (40 feet)	no evidence of human activity within 6 meters (20 feet)	evidence of human activity within 6 meter (20 feet)
	(⇒ while facing downstream)	left 10-9 right 10-9	8-6 8-6	5-3 5-3	2- 2-

US Environmental Protection Agency; 1997; "Field and laboratory methods for macroinvertebrate and habitat assessment of low gradient nontidal streams"; Mid-Atlantic Coastal Streams Workgroup, Environmental Services Division, Region 3, Wheeling, WV; 23 pages with appendices.

Monitoring – On the ground

• Ground level photos documenting structure condition

Timeline

• Starting at Year 1, each monitoring year

Failure Mode

- Structures functioning are not functioning designed.
 - Burial of structures at dam breach not a performance issue

Reporting

• Photos each monitoring year and narrative description of the structure function

Percent Native Cover

Abundant Biological Communities

Monitoring – Aerial and on the ground

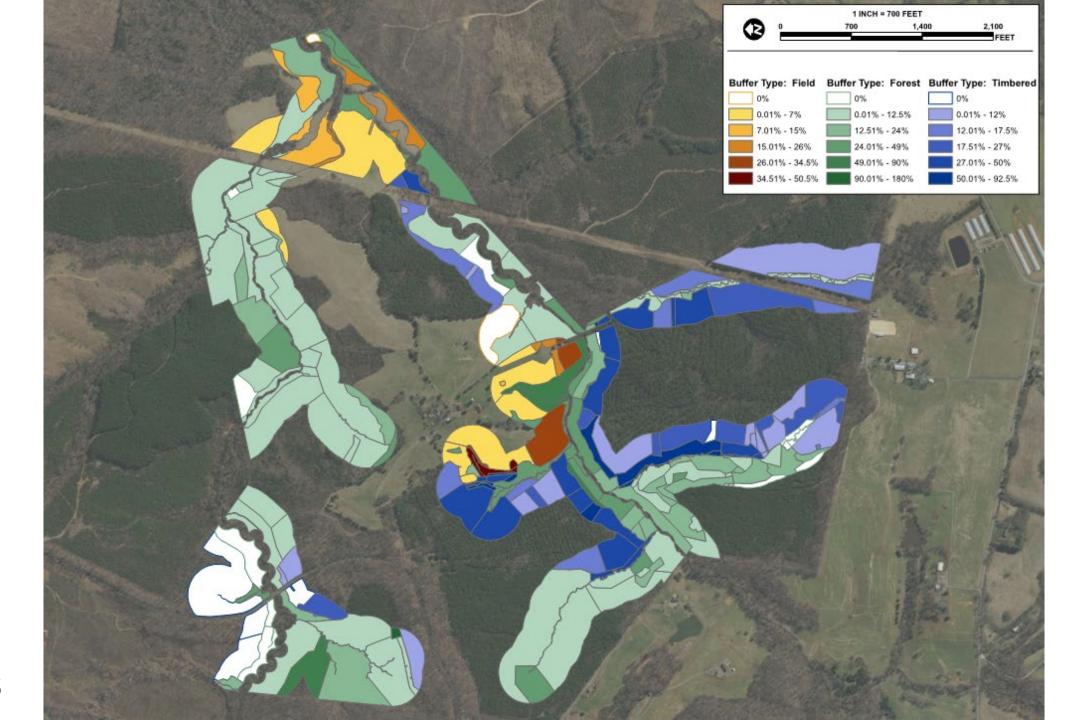
- Color growing season aerial photos
- Semi-quantitative inventory of species

Timeline

- Starting at Year 1, each monitoring year
- Only percent coverage requirement for Year 1 of the impoundment removal

Failure Mode

• Less than 60% native herbaceous cover at the end of the first growing season, less than 80% coverage of site each monitoring year after


Reporting

• Maps showing vegetation cover and heat map of percent native herbaceous, species inventory list

Pond is 42% vegetated: 7,625 sf

Total Pond Area: 17,966 sf

Biological Monitoring Abundant Biological Communities

- For informational purposes only, conducted before and after construction and including a control reach
- Includes:
 - Benthic Macroinvertebrate sampling, identified to Genus as outlined by the DEQ Biological Monitoring Program Quality Assurance Project Plan for Wadeable Streams and Rivers
 - eDNA for fish species presence/absence
 - Water chemistry monitoring during biological sampling events, including temperature, dissolved oxygen, pH, and conductivity

Adaptive Management Plan

		Alternative Endpoints		
Key Process	Expected/Designed Endpoint	Acceptable Endpoints	Unacceptable endpoints	
Extensive Lateral and Vertical		Wet meadow	Upland community	
Connectivity/Abundant		Scrub-shrub		
Biological Communities– Vegetation	Riparian forested wetlands	Vegetation managed by beaver/impounded	Minimal or bare vegetation community	
Retention of Materials-	Stable functional single-thread	Stable functional multithread retentive system with active floodplain	Unstable or non-functional system with single or multi- thread channels	
Morphology	reach with active floodplain	Stable, functional system managed by beaver	Unstable or non-functional system managed by beaver	
Creation and Maintenance of		Multithread stream-wetland complex	Non-functional channel habitat	
Diverse Habitats	complex	Beaver wetland complex	Non-functional off-channel habitat	

Key Process	s Parameter Indicator		Starting Year/Timing		
Vertical	Floodplain Connectivity	Stream gage, photos of floodplain access evidence	Start: Year 2 for impoundment removal Frequency: Each Monitoring Year		
/e Lateral and ^v Connectivity	Groundwater and Surface Water Exchange	Groundwater wells	Start: Year 2 for impoundment removal Frequency: Each Monitoring Year		
Extensive Lateral and Vertical Connectivity	Lateral Migration	Bank Erodibility Hazard Index (BEHI)	Start: Year 3 Frequency: Year 3, Year 5, and Year 10		
Exter	Temperature	Mean surface temperature - temp loggers	Start: Year 2 Frequency: Each Monitoring Year		
ntenance of bitats	Stream Channel Formation	Visual inventory with winter aerial imagery	Start: Year 1 Frequency: Each Monitoring Year		
Creation and Maintenance of Diverse Habitats	Instream Habitat Diversity	Coastal Plain Habitat Assessment	Start: Year 1 Frequency: Each Monitoring Year		
Retention of Materials	Structure Stability	Photos and assessment	Start: Year 1 Frequency: Each Monitoring Year		
gical Communities	Vegetation	Percentage of bare ground (Yr 1), Percentage of native vegetation - growing season aerial and ground verification	Start: Year 1 Frequency: Each Monitoring Year		
Abundant Biological Cc	Vegetation	Percentage INU species - aerial and ground verification	Start: Year 1, on the ground survey starts at Year 2 for impoundment removal Frequency: Each Monitoring Year		
	Vegetation	Woody Stem Establishment	Start: Year 1, Year 2 for impoundment removal Frequency: Each Monitoring Year		
*Highlighted cells are selective Year 1 monitoring protocols for the impoundment removal reaches					

Where are we now?

- Have received positive feedback from regulators but still waiting on comments
- Plan to continue pushing forward alternative performance monitoring for other types of projects:
 - Beaver dam analogs and engineered log jams
 - Floodplain restoration projects
 - And hopefully all other stream restoration projects!

Thank you

Bree Stephens

Stream Scientist <u>bstephens@res.us</u>

Øres

Proud sponsor & exhibitor Find us at booth #202

